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A An example illustrating the causal graph
framework for missing data

Consider the following example from (Mohan and Pearl
2020). We are interested in a dataset consisting of three
variables - age (A), gender (G) and obesity (O). Figure 1a

Figure 1: Causal graphs for missingness by Mohan and Pearl

shows the case of no missingness i.e. when all variables are
fully observed. The edges between the variables shows the
causal relationship between them. Figure 1b shows the case
in which variable O has missingness and as a result we ob-
serve only O∗, where O∗ = O if Ro = 0 and O∗ = missing
if Ro = 1. In this case of missingness, Ro is independent
of other variables. In the language of missing data litera-
ture (Little and Rubin 2019), this is a case of MCAR (missing
completely at random). Figure 1c shows the case when Ro

is caused by A. This is a case of MAR (missing at random)
because missingness is random conditioned on an observed
variable A. Figure 1d shows the case when Ro is caused by
variable O itself. This is a case of MNAR (missing not at
random) because the variable O causes its own missingness.

B Proofs of Propositions 1-6
Before presenting the proofs, let us quickly revisit d-
separation (Pearl 2009). d-separation answers the question
whether (sets of) variables A and B are conditionally inde-
pendent given C. If A and B are d-separated by C, then A
andB are conditionally independent givenC i.e.A ⊥⊥ B|C,
otherwise independence is not guaranteed.
Definition 1. LetA,B,C be the three non-intersecting sub-
sets of nodes in a causal graph G. A path p is said to be
d-separated (or blocked) by a set of nodes C if and only if

1. p contains a chain i → m → j or a fork i ← m → j
such that the middle node m is in C, or

2. p contains an inverted fork (or collider) i → m ← j
such that the middle node m is not in C and such that no
descendent of m is in C.

A setC is said to d-separateA fromB if and only ifC blocks
every path from a node in A to a node in B.

Proof of Proposition 1. To obtain the error rate estimate
of a classifier, the standard procedure is to use the classifier
to predict Ŷ on i.i.d. samples of the data and compare it to
Y . However, since the data is incomplete, we do not have ac-
cess to Ŷ and Y . Instead, we observe Ŷ ∗ (predictions on the
available samples) and we compare them to Y ∗ (outcomes
for the available samples). Therefore, while the true error
rate of the classifier for a group Z is P (Ŷ |Y,Z), we end up
estimating P (Ŷ ∗|Y ∗, Z∗) due to incomplete data. We know
that P (Ŷ ∗|Y ∗, Z∗) = P (Ŷ |Y,Z,D = 1) (by definition).
It is easy to see that P (Ŷ |Y,Z,D = 1) 6= P (Ŷ |Y, Z) be-
cause Ŷ and D are not d-separated given Y,Z in Figure 1.
There exists an active path Ŷ ← X → D.

Proof of Proposition 2. In the causal graph shown in Fig-
ure 2a, we first show that Y and D are d-separated by X .
There are two paths between Y and D - 1) D ← X → Y
and D ← Z → X → Y . It is easy to see, based on Def-
inition 1, that both of these paths are blocked by X . Thus,
Y ⊥⊥ D|X . This means, P (Y |X,D = 1) = P (Y |X). We
know that, by definition, P (Y |X,D = 1) = P (Y ∗|X∗).
Thus, the estimate for P (Y |X) that we obtain from the
incomplete data is consistent. We can similarly see that
Y ⊥⊥ D|X,Z is also true, implying that P (Y |X,Z) esti-
mate is also consistent.
On the other hand, there is a direct edge from the variable X
to its missingness mechanism D in the causal graph shown
in Figure 2a. Theorem 2 of Mohan and Pearl (2020) implies
that joint distribution P (X) is therefore not recoverable.

Proof of Proposition 3. The proof of Proposition 3 fol-
lows similarly to the proof of Proposition 2. The differ-
ence in causal graph shown in Figures 2b is that the path



D ← Z → Y is not d-separated by X . Thus, conditional
independence is not guaranteed (Y 6⊥⊥ D|X).
Similar to the previous case, D and X have a direct edge
implying non-recoverability of the joint distribution P (X).

Proof of Proposition 4. The graph shown in Figures 2c
and 2d contain unobservable variables U . For reasoning
about d-separation, this variable can be removed and re-
placed by a bi-directed edge (Pearl 2009; Mohan and Pearl
2020) between X and D (in Figure 2c) and between D and
Y (in Figure 2d). It is easy to see now that all paths between
Y and D are d-separated by X,Z in Figure 2c. This implies
that our estimate of P (Y |X,Z) from the incomplete data
are consistent. On the other hand, D and Y now have a di-
rect edge between them in Figure 2d. Using Theorem 3 of
Mohan and Pearl (2020), we can claim that the conditional
distribution P (Y |X,Z) is not recoverable.
D and X have a direct edge implying non-recoverability of
the joint distribution P (X).

Proof of Proposition 5. The proof follows in the same
way as that of Proposition 4. The main idea is to see that,
even in the presence of the new variable Da, X continues to
block all paths between Y and D in Figure 2e and the direct
edge between Y and D continues to exist in Figure 2f.

Proof of Proposition 6. In Figure 3a, X2 is d-separated
from D1 by X1. Thus, our estimate of P (X2|X1) from the
incomplete data is consistent. Similarly, in Figure 3b, Y
is d-separated from D2 by X1, X2. Thus, our estimate of
P (Y |X1, X2) from the incomplete data is consistent.
It remains to show that P (Y |X1) can also be recovered.

P (Y |X1) =
∑
X2

P (Y,X2|X1)

=
∑
X2

P (Y |X2, X1) · P (X2|X1)

Thus, P (Y |X1) can be calculated by writing it in terms of
P (Y |X2, X1) and P (X2|X1), both of which can be consis-
tently estimated as shown earlier.

C Constraints in DF 2 Algorithm
In this section, we describe how one can write demographic
parity and equal opportunity fairness constraints in the DF 2

algorithm.

Demographic Parity. Demographic parity constraint at
stage i is given by

P (Ŷi = 1|Z = a) = P (Ŷi = 1|Z = b)

This constraint can be replaced by an empirical estimate as
follows:∑ni

j=1Di[j] · 1zj=b∑ni

j=1 1zj=b
=

∑ni

j=1Di[j] · 1zj=w∑ni

j=1 1zj=w

Here b andw represent two values of the sensitive attributeZ
(for e.g. black and white). 1 is the indicator function, which
takes value 1 if the condition in the subscript is true, and
0 otherwise. Di and ni are defined in the main text of the
paper.

Equality of Opportunity. Equal opportunity constraint at
stage i is given by

P (Ŷi = 1|Y = 1, Z = a) = P (Ŷi = 1|Y = 1, Z = b)

This constraint can be replaced by an empirical estimate as
follows:

∑ni

j=1Di[j] · 1zj=b · Pj(Y |X1, . . . , Xi)∑ni

j=1 1zj=b · Pj(Y |X1, . . . , Xi)
=∑ni

j=1Di[j] · 1zj=w · Pj(Y |X1, . . . , Xi)∑ni

j=1 1zj=w · Pj(Y |X1, . . . , Xi)

Note that the constraints never use P (X). The summation
over the population may cause a misconception that we
are indeed indirectly using wrong P (X). But note that the
summation is over the individuals who appear during the
decision-making phase and not over the individuals in the
training data (which has missingness). Therefore, training
data is used only to estimate P (Y |X1, . . . , Xi). Also note
that the constraints are linear in Di[j].

D Steps of DF 2 Algorithm in a Two Stage
Process

Algorithm DF 2 Stage 1

Input Initial pool of in-
dividuals, their feature
set X1, and risk scores
P (Y |X1)
Output Individuals to be
forwarded to Stage 2

1: Solve optimization
problem 1 for i = 1
and obtain optimal
decision provability
vector D1 for the input
pool of individuals.

2: Select individuals
based on the optimal
decision vector D1

determined in Step 1.

Algorithm DF 2 Stage 2

Input Individuals for-
warded by Stage 1, their
feature set X1, X2, and risk
scores P (Y |X1, X2)
Output Finally selected
individuals

1: Solve optimization
problem 1 for i = 2
and obtain optimal
decision provability
vector D2 for the input
individuals.

2: Select individuals
based on the optimal
decision vector D2

determined in Step 1.

E Proof of Theorem 1
We compare the solution returned by the DF 2 algorithm
with the optimal solution. Let us first formally understand
the optimal solution in a 2-stage process. DF 2 solves an
optimization problem at both stages, maximizing precision
subject to budget and fairness constraints. However, the so-
lution returned by the final stage is optimal only with re-
spect to the input that it receives from the previous stage. On
the other hand, the (absolute) optimal solution would be the
one calculated by solving the same optimization problem,
but with the entire input (i.e. without any filtering done by
the first stage). In other words, suboptimality occurs in our
multi-stage process algorithm because the first stage (with



limited information P (Y |X1)) may filter out candidates that
the final stage (with more information P (Y |X1, X2)) might
have considered as better. Let α1 and α2 be the budget con-
straints in the two stages.

Let r1 and r2 denote the random variables P (Y |X1)
and P (Y |X1, X2). We know from (Menon and Williamson
2018; Corbett-Davies et al. 2017) that optimization problem
of the form used in DF 2 results in a classifier where the
first and the second stage classifiers apply subgroup spe-
cific thresholds on the risk scores r1 and r2, respectively
(i.e. individuals above their subgroup-specific threshold are
selected and everyone else is rejected); see Theorem 3.2 in
(Corbett-Davies et al. 2017), whose proof works mutatis mu-
tandis for our case with a budget constraint. We use the stan-
dard convention of calling P (Y |X1, . . . Xi) as risk scores. It
is just the probability of the outcome of interest given the ob-
servable features. In hiring example, this is the probability of
an individual being good; everyone above a certain value for
this probability may thus be shortlisted and everyone else be
rejected. In recidivism example, this is the probability of an
individual committing a crime again; everyone above a cer-
tain value for this probability may thus be detained and ev-
eryone else be released. In loan example, this is the probabil-
ity of an individual being returning a loan; everyone above a
certain value for this probability may thus be given loan and
everyone else be denied. Let δz(α1) be the threshold (for a
subgroup z) on r1, and let δz(α2) be the threshold on r2 as-
suming that the first stage doesn’t exist (i.e. all individuals
from the first stage are made available to the second stage).

Demographic Parity Constraints.
When the fairness constraints are demographic parity con-
straints, the optimization problem has to select candidates
from both the groups with equal probability. This means
if the budget constraint is α in a given stage, it must se-
lect the best α fraction of input candidates from both the
groups. Thus, the probability that theDF 2 algorithm returns
a suboptimal solution is nothing but the probability that a
candidate who would have passed the threshold δz(α2) for
their respective group doesn’t pass the first stage threshold
δz(α1). Remember that δz(α2) is the threshold on r2 assum-
ing that the first stage doesn’t exist (i.e. all individuals from
the first stage are made available to the second stage). We
thus have,

P (D∗ 6= D) = P (r1 < δz(α1)|r2 ≥ δz(α2))

Using the Coherent Feature assumption, we can rewrite this
as:

P (D∗ 6= D) ≤ P (r1 < δz(α1)|r2 = δz(α2))

Equality of Opportunity Constraints.
When the fairness constraints are equality of opportunity,
it is no longer necessary to select best α fraction of input
candidates from both the groups, if the budget constraint in
a given stage is α. The solution may select unequal frac-
tion of best candidates from the two groups as long as equal

opportunity and the overall budget constraints are satisfied.
The probability that the DF 2 algorithm returns a subopti-
mal solution (a solution with lower expected utility than the
optimal solution) is equal to the probability that a candidate
who would have passed the threshold δz(α2) for their re-
spective group doesn’t pass the first stage threshold δz(α1)
and that the candidate can’t be replaced by another candidate
of equal or better utility without violating equal opportunity
constraints. We will show that the probability of the second
event (i.e. that the candidate can’t be replaced by another
candidate of better utility without violating equal opportu-
nity constraints) is 1. Let us first consider the possibility of
finding a better replacement for the candidate from the same
group. Since we know that the optimization problem returns
solution that are threshold based rules, it is clearly not pos-
sible to find a better replacement because all better candi-
dates from the same group are already marked as selected
in a threshold based decision rule. Let us now consider the
possibility of finding a better replacement for the candidate
from the other group. This is also impossible. If it was possi-
ble to select a better candidate from the other group without
violating equal opportunity constraints, that candidate (for
whom we are finding a replacement) wouldn’t be selected
in the optimal solution (by definition of optimal solution) in
the first place. Thus, in the case of equal opportunity con-
straints too, the probability that the DF 2 algorithm returns
a suboptimal solution (a solution with lower expected utility
than the optimal solution) is equal to the probability that a
candidate who would have passed the threshold δz(α2) for
their respective group doesn’t pass the first stage threshold
δz(α1). Thus, we obtain the same bound as for demographic
parity.

Thus, we obtain the following for both types of fairness
constraints:

P (D∗ 6= D) ≤ P (r1 < δz(α1)|r2 = δz(α2))

F Empirical Analysis - Additional Details
Dataset Details.
As mentioned in the paper earlier, we used same experi-
mental conditions as Emelianov et al. (2019) by using their
code available publicly on github (https://github.com/vitaly-
emelianov/ multistage fairness/). For completeness, we pro-
vide below the details of the datasets and pre-processing
steps of Emelianov et al. (2019):

ADULT Dataset. The dataset (Dua and Graff 2017) con-
tains 48842 rows and 14 features. The label income denotes
if the salary is above 50, 000 dollars. In the experiments,
Emelianov et al. (2019) binarize and use only the 6 follow-
ing features: sex (is male), age (is above 35), native-country
(from the EU or US), education (has Bachelor or Master de-
gree), hours-per-week (works more than 35 hours per week)
and relationship (is married).

COMPAS Dataset. The COMPAS dataset (Larson et al.
2016) contains information about defendants, such as their
name, gender, age, race, start of the sentence, end of the sen-
tence, charge description etc. and a label recidivism denot-
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Figure 2: Demographic Parity Fairness Constraints
(3-Stage Process)
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Figure 3: Equality of Opportunity Fairness Constraints
(3-Stage Process)

ing whether a defendant recidivates within 2 years or not.
Emelianov et al. (2019) use only the rows for Caucasian and
African-American defendants (total 6150 rows). They bina-
rize and leave only the following 6 features: sex (is male),
young (younger than 25), old (older than 45), long sentence
(sentence was longer than 30 days), drugs (the arrest was
due to selling or possessing drugs), race (is Caucasian).

GERMAN Dataset. The German Credit data from (Dua
and Graff 2017) contains information about 1000 applicants
for credit. The label returns shows if applicant payed back
his loan. Emelianov et al. (2019) binarize and use 6 features:
job (is employed), housing (owns house), sex (is male), sav-
ings (greater than 500 DM), credit history (all credits payed
back duly), age (older than 50).

3-Stage Decision-making Process.
In addition to the 2-stage process discussed in the paper, we
also simulated a 3-stage decision making process by setting
α3 = 0.3, α2 = 0.4 and varying α1 between 0.4 and 1. The
sequence of feature observation in the three stages was same
as (Emelianov et al. 2019) and is provided here for com-
pleteness. In the ADULT dataset, the first stage observes sex
and age, the second stage adds education and native country
to the previous features, and finally, the third stage adds re-
lationship. In the COMPAS dataset, the first stage observes
race and young, the second stage adds drugs and old to the
previous features, and finally, the third stage adds sex and
long sentence. In the GERMAN dataset, the first stage ob-
serves sex and job, the second stage adds housing and credit
history to the previous features, and finally the third stage
adds age and savings.

We make similar observations as in the 2-stage process.
The results are shown in Figure 2 (for demographic parity
constraints) and Figure 3 (for equal opportunity constraints).
DF 2 algorithm obtains almost the same utility as the opti-
mal EAGGL algorithm. In case of GERMAN dataset, we
observe that the performance drops marginally. This may be
due to the specific sequence of features observed in different
stages in the GERMAN dataset (see Theorem 1) rather than
the number of stages.
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